lunes, 6 de enero de 2025

Una estrella a punto de estallar en nuestros cielos

... y no exageramos. Sin embargo, tenemos que tener en cuenta que no será la típica explosión espectacular que estamos acostumbrados a ver en las películas, sino que durante algunas semanas una "nueva" estrella, relativamente luminosa, brillará en el cielo. Estamos hablando del estallido de la nova recurrente T CrB

No se trata de un fenómeno espectacular y para la gran mayoría de la gente pasará completamente desapercibido. Sin embargo, hablamos de algo excepcional: la nova más brillante que podremos observar en nuestras vidas. Será fácilmente visible a simple vista desde las ciudades y lugares con alta contaminación lumínica. Para los científicos, en cambio, se trata de una oportunidad única para probar y mejorar los modelos de evolución estelar y de la física nuclear y de partículas, ya que prácticamente se podrá observar en todo el espectro electromagnético.


Foto de gran campo donde se puede identificar la Corona Boreal (Bum-Suk Yeom). En el recuadro se puede ver un detalle de la zona de T CrB tomada por uno de nuestros socios en junio, en un campo mucho más pequeño.


¿QUÉ ES UNA NOVA (RECURRENTE)?

La etimología del término nova proviene del latín "stella nova", que fue acuñado por primera vez en 1573 por Tycho Brahe en su obra "De nova et nullius aevi memoria prius visa stella" (Acerca de la estrella nueva y nunca antes vista en la vida o memoria de nadie). En ella hacía referencia a una nueva estrella que apareció en noviembre de 1572 y que llegó a ser incluso más brillante que Venus. La nueva estrella poco a poco se fue debilitando y en marzo ya ni siquiera se podía llegar a ver visible a simple vista.

Desde un punto de vista físico, una nova es el resultado de una explosión producida en la superficie de una enana blanca que forma parte de un sistema binario, en que las componentes se encuentran muy próximas. En dicho sistema, la enana blanca acreta materia de su compañera (generalmente una gigante roja, aunque no siempre) que según se va acumulando y rellenando su lóbulo de Roche aumenta su presión, calentándose hasta llegar a alcanzar la temperatura necesaria para empezar a quemar de manera incontrolada el hidrógeno, dando lugar a una explosión nuclear.  No hay que confundir este fenómeno con una explosión de supernova como la de Betelgeuse (SN II), de la que ya hablamos durante la pandemia. En este caso se trata de la muerte por colapso de una estrella masiva.


 Tipo de nova a la que podría pertenecer la V1674 Hercules.

 Recreación artística del sistema binario en el que una enana blanca (a la derecha) acreta materia de su compañera, antes de explotar como una nova.

 

Hasta hace no mucho se  pensaba que la energía liberada en la explosión destruía el sistema (nova clásica) y solo en algunos casos (nova recurrente) el sistema resistía a la explosión y comenzaba de nuevo la acreción de masa. Ahora se piensa que todas las novas podrían ser recurrentes pero el periodo entre los estallidos es demasiado grande para volver a observarlo de nuevo. Cabe destacar que las novas recurrentes podrían ser también las progenitoras de las SN Ia.

Son objetos poco frecuentes y en la Galaxia sólo se conoce una decena. Los periodos entre explosiones varían entre una y varias décadas. Lógicamente, para que una nova haya sido clasificada como recurrente se deben haber observado más de una explosión. La más parecida a T CrB es RS Oph, cuyo último estallido pudimos observarlo en 2021.

Curva de luz de RS Oph (ene 2021 - may 2022) centrada en su último estallido. En negro se representan las observaciones visuales registradas en la AAVSO; en naranja se muestran las observaciones fotométricas en V y en verde se destacan las observaciones visuales llevadas a cabo por nuestro socio Javier.

 

En ambos casos la masa de la enana blanca es muy cercana al límite de Chandrasekhar, mientras que la de la compañera, una gigante roja (de tipo espectral M), es algo menor. En el caso de T CrB las masas son respectivamente de 1,37 y 1,12 masas solares y el periodo orbital de 227 días. Mucha de las cosas que sabemos y esperamos observar en el próximo estallido de T CrB lo hemos aprendido gracias a las observaciones de RS Oph.

 

 ¿CUÁNDO OCURRIRÁ EL PRÓXIMO ESTALLIDO?

Esa es la pregunta del millón y por el momento no hay una única respuesta, sabemos que muy pronto, pero no podemos adivinar el momento exacto hasta que no se esté produciendo, lo que añade un poco de expectación a la espera.

Echando la vista atrás, se conocen dos explosiones previas de T CrB documentadas científicamente. La primera sucedió el 12 de mayo de 1866 y la segunda el 9 de febrero de 1946. Ambos eventos están separados casi 80 años por lo que se espera que la siguiente explosión sea a finales de 2025 o principios de 2026. Aunque el periodo entre explosiones no es exactamente siempre el mismo, en las novas recurrentes de gran periodo como T CrB suele ser bastante similar. Gracias a la revisión de archivos y viejas crónicas, recientemente parece haberse confirmado otras dos observaciones históricas, una en 1217 y otra más reciente en diciembre de 1787 (que sería la anterior a la de 1866, de nuevo algo menos de 80 años antes).

 

Curva de luz de T CrB, en quiescencia en torno a la magnitud 10,2 durante el segundo semestre de 2024. Se emplean los mismos colores que en la figura anterior. La menor dispersión de las observaciones fotométricas nos permite distinguir la modulación orbital del sistema (con un periodo de 113 días y una variación en torno a las 0,3 magnitudes).
 
 
Sin embargo, durante buena parte de 2024 estuvimos alerta debido a que un estudio científico, basándose en la comparación de las curvas de luz pasadas y actual, pronosticaba la explosión de manera inminente en algún momento entre marzo y septiembre. Resulta que en 1938 se produjo un leve incremento de la luminosidad de la estrella, algo que también se observó en 2015. Además, también un año antes de la explosión de 1946 se produjo un pequeño descenso en su brillo, que de nuevo fue observado en la primavera de 2023. Por todo ello parecía que la nova podría estallar otra vez en 2024. Sin embargo, como hemos visto, dicha explosión todavía no se ha producido y tendremos que seguir esperando, seguramente, al menos un año.
 

Curva de luz visual de T CrB (AAVSO) centrada en la explosión de 1946. Además del pico, se puede ver un pequeño mínimo anterior a la explosión (señalado con una flecha azul) y un rebote posterior de casi dos magnitudes antes de volver al estado de quiescencia.


La predicción que cuenta con una mayor fiabilidad a día de hoy es la del mayor experto mundial en esta estrella, Bradley Schaefer, quien pronostica la próxima explosión de T CrB para mediados de 2025 (con un error de algo más de un año). Esto quiere decir que la estrella podría explotar en cualquier momento, así que tenemos que estar atentos.


¿QUÉ PODEMOS ESPERAR?

Gracias al monitoreo constante de su curva de luz, que abarca las dos últimas explosiones, sabemos que T CrB pasará en solo unas horas de su estado de quiescencia habitual en torno a la décima magnitud (visible solo con telescopios o grandes prismáticos) a la segunda. Durante el pico del máximo habrá aumentado su brillo más de 1500 veces llegando a ser casi tan luminosa como la estrella polar o Alphecca, la estrella más brillante de la Corona Boreal. Una vez alcanzado el máximo, su brillo irá decayendo rápidamente y en poco más de una semana dejará de ser visible a simple vista. Medio año después podría haber un pico secundario, en el que la estrella aumentaría de nuevo unas dos magnitudes para volver paulatinamente a su estado habitual de reposo.

Este tipo de fenómenos es muy energético por lo cual, como decía al principio, se puede observar en distintas partes del espectro electromagnético. Mucho de lo que conocemos lo hemos aprendido observando RS Oph. Sin embargo, T CrB se encuentra tres veces más cerca (a unos 3000 años luz) por lo que el flujo de rayos gamma, rayos X, neutrinos ... que llegarán a nuestra atmósfera será mayor y de esta manera podremos costreñir mejor los modelos tanto de evolución estelar como de la física nuclear y de partículas. Sin embargo, tenemos que tener en cuenta que todo esto (excepto los rayos gamma) sólo se podrán detectar si la estrella está sobre el horizonte de noche. En el peor de los casos, podría producirse la explosión de día y no ver absolutamente nada. Para volver a observarlo deberíamos esperar hasta el año 2105 ...

En estos momentos la estrella empieza a ser visible en la segunda parte de la noche y su visibilidad irá mejorando durante la primavera y la primera parte del verano en que será visible toda la noche. Si las predicciones se cumplen, debiéramos poder observar el estallido en óptimas condiciones con la estrella alta en el cielo desde mayo hasta julio. ¡Crucemos los dedos!

 

 



martes, 1 de octubre de 2024

Otro cometa a la vista

     A principios del año pasado la colaboración ATLAS y el Observatorio de la Montaña Púrpura (China) descubrieron de manera independiente un pequeño cuerpo que se encontraba a más de mil millones de kilómetros de la Tierra, entre las órbitas de Júpiter y Saturno, con un brillo por debajo de la 18ª magnitud. Enseguida se vio que se trataba de un cometa que se estaba acercando al Sol desde la parte más externa (Nube de Oort) del Sistema Solar. Fue designado oficialmente como C/2023 A3 (Tsuchinshan-ATLAS).
 
 

Así se vio el cometa el día 29 media hora antes de la salida del Sol desde el monte Etna, a 2000 m de altitud (Javier Alonso).

 

     Desde entonces, las numerosas observaciones llevadas a cabo, nos han permitido determinar su órbita y conocer sus características. Se trata de un cometa nuevo, con un periodo de millones de años, que está atravesando por primera vez la parte interna del Sistema Solar. Esto conlleva que gran parte de su material volátil se conserve prácticamente intacto, listo para ser sublimado en su aproximación al Sol. Además, tiene un tamaño relativamente importante, con un núcleo que se estima pueda estar entre los 5 y los 16 km. Teniendo en cuenta su tamaño y que este tipo de cometas suele presentar una actividad bastante explosiva, el C/2023 A3 desató una gran expectativa: ¡Podría llegar a ser visible a simple vista! Recuerda mucho a otros cometas espectaculares como fueron el Lovejoy o el Mc Naught.


Visión del cometa desde las afueras de Burgos, cuando se encontraba apenas 4º sobre el horizonte. Foto tomada por nuestro compañero Leonardo Cuesta el amanecer del día 30.

 

     Hasta ahora el cometa no ha defraudado y ha tenido varios episodios de actividad durante su aproximación al Sol. Se esperaba que en el perihelio pudiera alcanzar la 3ª magnitud e incluso llegar ser algo más brillante, en torno a la 2,5 mag. Para este tipo de cometas, el paso por el perihelio es crítico, y muchos no lo superan, fragmentándose en varias partes. Sin embargo, el C/2023 A3 ha resistido y las últimas observaciones visuales lo sitúan en una magnitud entre 1,5-2, al nivel de las mejores predicciones. El cometa pasó por el perihelio el pasado día 27, a una distancia de 0,39 UA, similar a la de la órbita de Mercurio. En la actualidad, se encuentra acercándose a la Tierra, cuyo perigeo ocurrirá el día 12, a una distancia de 0.56 UA (unos 80 millones de km). ¡Ese debería ser el mejor momento para observarlo!

 

 Evolución de la luminosidad del cometa a lo largo del tiempo. En rojo está la curva de luz actualizada con las observaciones realizadas a simple vista (puntos azules) y con CCD (puntos negros). La línea verde pronostica el máximo brillo del cometa debido a la "dispersión hacia adelante" de su luz.


     Por si esto no fuera suficiente, en torno al perigeo, por un breve espacio de tiempo, se espera que el Sol, justo por detrás del cometa, ilumine los pequeños cristales de hielo y los granos de polvo dispersando su luz e incrementando de manera considerable su brillo. Este efecto conocido como "forward scattering" (o dispersión hacia adelante) podría hacer que el C/2023 A3 llegara a ser tan brillante como Venus o Júpiter (hay quien dice que podría llegar a magnitud -3 o incluso -6), haciéndolo algo realmente espectacular ...


VISIBILIDAD

     Hasta ahora se ha tratado de un objeto vespertino, que se ha podido observar sólo momentos antes de la salida del Sol, en pleno crepúsculo. Esto ha dificultado mucho su observación, ya que aunque el cometa ha seguido las previsiones y ha alcanzo un brillo bastante decente (similar a las estrellas del cinturón de Orión), también el brillo del cielo ha sido muy elevado, disminuyendo su contraste. Personalmente, no he sido todavía capar de verlo a simple vista, aunque sí fácilmente con prismáticos. Ha sido más esquivo de lo que pueda parecer. En los próximos días, a medida que el cometa dé la vuelta al Sol, lo veremos cada vez más cerca de este, hasta el momento en que desaparecerá.



Imagen tomada el día 26 por Yuri Beletsky desde el Observatorio de Las Campanas en pleno desierto de Atacama (Chile)

 

     En torno al perigeo será de nuevo visible, pero esta vez al atardecer, lo que hará algo más cómoda su observación. Como decíamos antes, el día 12 será el mejor momento para verlo, todavía cerca del horizonte a unos 10º de altura, algo más de una hora después de la puesta de Sol. Para disfrutar al máximo de su observación, dada su escasa elevación, deberemos buscar un sitio con el horizonte oeste completamente despejado, y mejor si es a una cierta altura. Los días sucesivos, poco a poco, el cometa irá ganando altura a medida que se aleja, pero al mismo tiempo se irá debilitando. En cualquier caso, durante la segunda quincena de octubre debería ser  todavía fácilmente visible. A simple vista o con unos pequeños prismáticos podremos disfrutar plenamente del espectáculo, como siempre, mejor desde sitios más o menos oscuros. Pequeñas cámaras de fotos, incluso teléfonos móviles, nos permitirán llevarnos un buen recuerdo del Tsuchinshan-ATLAS.

     Aún siendo visibles desde ambos hemisferios, los cometas no siempre se ven igual desde todos los lugares. En este caso, la observación del C/2023 A3 hasta el momento ha sido más favorable desde el hemisferio sur. A continuación mostramos un par de fotos hechas desde Chile y Australia. Esperemos ver algo parecido desde nuestras latitudes en octubre ...


 

Amanecer desde el lago Boga (Victoria, Australia) con el cometa como protagonista (Michael Mattiazzo, 27/09/24). 

 

 



jueves, 5 de septiembre de 2024

Quintanarraya, sede de las Jornadas Europeas de Patrimonio 2024

    Las Jornadas Europeas de Patrimonio (JEP) se vienen celebrando anualmente, con su formato actual, entre septiembre y noviembre, desde 1999. Se trata de una iniciativa europea que busca poner en valor el patrimonio cultural (tanto material como inmaterial) con el objetivo de dar a conocer la riqueza y diversidad cultural de Europa

    En esta edición de 2024 el tema propuesto es "Rutas culturales, redes y puntos de encuentro". De este modo se quiere poner en evidencia el papel de nexo y unión de pueblos que el patrimonio ha tenido a lo largo de la historia y que aún hoy tiene.

Ayuntamiento de Quintanarraya - Página web de Quintanarraya, un acogedor  pueblo de Burgos  

Logo institucional de las JEP

 

    El Ayuntamiento de Quintanarraya (Burgos), en colaboración con las asociaciones culturales del pueblo, entre ellas Astro Demanda, organiza las JEP 2024, conviertiendo al pueblo en una de las sedes que albergarán las JEP. Desde mitad de septiembre hasta primeros de noviembre en el Salón de la Villa de Quintanarraya (justo debajo del bar) tendrá lugar una serie de conferencias sobre los caminos históricos que recorren Castilla y, en particular, los que discurren por Quintanarraya y el sur de la provincia de Burgos. El programa de actividades se completa con la teatralización del día de difuntos "Samhain"  en la cultura celta, tras el cual se clausararán las JEP con un banquete de hermandad la noche del 2 de noviembre (organizado por la A. C. Amigos de Klounioq). El programa con los títulos y ponentes de las distintas conferencias se muestra a continuación. Nuestra actividad, si el tiempo lo permite, se llevará a cabo la noche del día 5, prácticamente coincidiendo con la luna nueva.

   

Programa con las actividades que tendrán lugar en Quintanarraya con motivo de las JEP 2024

 

    Más información sobre las JEP 2024 se puede encontrar en los siguientes enlaces: 

 -A nivel europeo y español

-Sobre la participación española, Ministerio de Cultura

- Actividades en Quintanarraya (actualizado)


    Esperamos vernos en Quintanarraya ... ¡tanto de día como de noche!

 

 

 

 

 

 

 

 

sábado, 18 de mayo de 2024

10 de mayo: Sicilia, ¿aurora boreal o SAR?

     En la entrada anterior hablábamos de cómo algunos de nuestros socios observaron la histórica aurora (¿o fue en realidad un SAR?) que se produjo el pasado día 10. Continuamos ahora con la descripción de cómo la vio otro socio desde Sicilia, en el sur de Italia. ¡AstroDemanda es internacional!

     Me encontraba ese viernes en nuestro observatorio en las faldas del Etna, a algo más de 1700 m de altitud, preparando la observación del tránsito de un exoplaneta (HAT-P-27b), cuando al mirar la pantalla con los datos meteo algo me llamó la atención. La imagen del cielo que mostraba la cámara "all Sky" mostraba un intenso color rojo por el horizonte norte. Lo primero que pensé es que el Etna había entrado de nuevo en erupción, así que salí fuera inmediatamente para comprobarlo. Nada. Se podía seguir observando. Siendo un observador solar habitual, enseguida caí en la cuenta del gran grupo de manchas visible esos días y la gran tormenta solar en curso, ¡se trataba de una aurora! ... ¡¡en Sicilia!! (que se encuentra a la altura de Granada, a unos 37º de latitud, cinco por debajo de Burgos).


Imagen de la aurora vista desde la cámara "all Sky" de nuestro observatorio del Etna

 

     Cuando tuve la oportunidad, salí fuera y me puse ya a observar detenidamente el cielo. A simple vista no se veía nada. Tal vez, sabiendo que había una aurora, se podía intuir un leve color rojizo en el horizonte NE, pero en ningún caso era algo claro. Tenía mi equipo de astrofotografía listo, pero nada de gran campo suficiente para capturar el fenómeno con el paisaje. Aproveché lo que tenía y saqué un par de fotos consecutivas (de solo 2" de exposición para no exagerar el color): una de la zona de la aurora (entre Cefeo y la zona por debajo del Cisne) y la otra sin aurora, centrada en Vega. La diferencia de color en el fondo de cielo es evidente, pero, claro, no es la típica foto de gran campo. Aún así, sirve como ejemplo para ver la diferencia:


Comparación de la zona del cielo con y sin aurora/SAR. Ambas fotos se tomaron de manera consecutiva y con la misma configuración de la cámara.

 

 Pero ... ¿Aurora o SAR?

     En la entrada anterior explicamos cómo se producen las auroras y cómo, en ciertas ocasiones muy poco habituales, se llegan a ver desde latitudes tan al sur. Sin embargo, en este caso, la explicación parece ser otra: un ARCO ROJO AURORAL ESTABLE (SAR por sus siglas en inglés). El SAR es un fenómeno que, a diferencia de las auroras, solo se produce en presencia de grandes tormentas solares. Sin embargo, su origen es parecido: la interacción del viento solar con la magnetosfera terrestre. En este caso las partículas cargadas no entran por los polos siguiendo las líneas del campo magnético, sino que son atrapadas a gran altura en los cinturones de Van Allen. Se trata de dos anillos de radiación, toroidales (es decir, en forma de donut), que protegen la Tierra del viento solar y los rayos cósmicos. En estos anillos (dos estables y un tercero, temporal, que en ciertos momentos se forma entre ambos) se concentran las partículas cargadas que nos llegan del espacio y que son atrapadas por el campo magnético.

 

 
                                                 Dos representaciones esquemáticas de los cinturones de Van Allen

 

     En el cinturón interno, compuesto principalmente por protones, es donde se producen estos arcos SAR. Normalmente este anillo se encuentra a una altura en torno a los 1000 km de la superficie terrestre. En condiciones de fuertes tormentas solares, nuestro campo magnético se debilita (temporalmente, después se vuelve a recuperar) al interaccionar con la gran cantidad de plasma que le llega del Sol. En estos momentos su altura desciende hasta los 400-500 km, solapándose con la parte más alta donde se producen las auroras. A esta altura, como ya explicamos en la anterior entrada, la concentración de oxígeno es muy baja y su interacción con estos protones capturados en el anillo genera la radiación rojiza que hemos visto estos días. Normalmente, estos arcos son invisibles al ojo humano y sólamente en casos excepcionales como el que sucedió el pasado día 10, con una tormenta de tipo G5 (la clase de tormenta más energética), llegan a ser percibirse a simple vista. A diferencia de las auroras, estos arcos sólo se producen a latitudes medias y como se define en su nombre, son muy estables (sin grandes cambios ni estructuras) y son de color rojizo. Esto es lo que yo vi desde Sicilia, tal cual.

 


 Espectacular imagen de Tristian McDonald, APOD de la NASA el pasado 3 de enero. Aurora y SAR captadas desde Nueva Zelanda (se pueden ver las Nubes de Magallanes en la parte alta de la aurora).


     Sin embargo, si ya es muy difícil separar la cola de una aurora vista a bajas latitudes de un arco SAR, la cosa se complica aún más teniendo en cuenta que muchas veces conviven, como se ve en la foto anterior. En este caso se aprecia perfectamente la aurora, tanto la parte baja, típicamente verde, como la más alta rojiza, con estructuras verticales (cortinas). Además, como algo raro, se puede ver en la parte superior un SAR, rojo también, con una clara estructura de arco. Normalmente lo que vemos es luz difusa roja y más cerca del horizonte. 

     Como resumen, quería terminar explicando que lo que vimos (o mejor dicho fotografiamos) la noche del 10 al 11 de mayo se trató mayoritariamente de un arco SAR, aunque en algunos casos más al norte (tanto en Italia como en España) llegó a estar acompañado de la parte residual de una aurora boreal. Aunque la mayoría de los medios hablaron solo de aurora, y seguirán haciéndolo en las próximas ocasiones en que esto suceda, me parecía necesario hacer esta aclaración y hablar de los SAR, un fenómeno muy poco conocido. Esperemos que en los próximos meses podamos disfrutar de algún otro ...


Breve "time lapse" hecho con las imágenes de la cámara "all sky" de nuestro observatorio, tomadas con un intervalo de cinco minutos.

 

 

 

lunes, 13 de mayo de 2024

¡Auroras a la puerta de casa!

     A estas alturas seguramente muchas de las personas que nos leen ya se habrán enterado, sea porque la han visto o porque lo han leído en prensa o redes sociales, de que durante la noche del pasado viernes sucedió un fenómeno muy poco habitual en nuestras latitudes: pudimos ver una aurora boreal. En esta entrada queremos explicar un poco en qué consistió el fenómeno y compartir alguna de las fotos hechas por nuestros socios. 


¿QUÉ SON Y CÓMO SE PRODUCEN LAS AURORAS BOREALES?

     Las auroras boreales (o australes, en el hemisferio sur) son el resultado de la interacción del viento solar con el campo magnético terrestre. El Sol envía al espacio un flujo de partículas cargadas, principalmente electrones y protones, de forma continua. Habitualmente, cuando estas partículas se aproximan a la Tierra, son desviadas por la magnetosfera y sólo aquellas más energéticas llegan a sortear esta defensa entrando por los polos, donde el campo magnético terrestre es mas débil. 

 

 
Foto realizada con el móvil por nuestro compañero Carlos desde las afueras de la ciudad de Burgos (Villanueva de Río Ubierna).

     Cuando estas partículas entran en contacto con las partes altas de la atmósfera, normalmente a alturas entre los 100-300 km, se encuentran con un gas enrarecido (muy poco denso) compuesto principalmente por átomos,  aunque también hay algunas moléculas, de oxígeno y nitrógeno. Cuando el viento solar impacta con este gas excita a esos átomos (o incluso los ioniza, según como sea su energía) que al volver a su estado fundamental, casi de manera instantánea, emiten una pequeña cantidad de energía. La suma de todas ellas es la aurora boreal

     Los colores que vemos en la misma dependerán de las partículas y energía en juego. El principal responsable de las auroras es el oxígeno. Al excitarse produce los dos colores más característicos: el rojo y, sobretodo, el verde. El primero se da en la parte más alta de la atmósfera donde la abundancia de oxígeno es menor y por tanto también la energía necesaria, produciéndose transiciones a mayor longitud de onda. Un poco más abajo, en el rango de altura comentado anteriormente, el oxígeno es más abundante y las transiciones son más energéticas, dando lugar al típico color verde. Por otro lado, por debajo de estas alturas, es más abundante el nitrógeno y su interacción con las partículas cargadas provenientes del Sol dan lugar a colores rojizos y violetas. La gama de colores que vemos durante una aurora boreal será la mezcla de todas estas interacciones, a distinas alturas y con distintos elementos, e irá cambiando de forma e intensidad a medida que el viento solar es atrapado por la magnetosfera.


Así capturó con su teléfono nuestro socio Dani la aurora desde la sierra de Madrid (Collado Mediano).


LA GRAN AURORA DEL 10 DE MAYO: ¿POR QUÉ TAN AL SUR?

     La energía del viento solar no es siempre la misma sino que varía según el momento del ciclo solar en el que nos encontremos. Como ya mencionamos hace un tiempo, en la actualidad estamos inmersos en el máximo solar. Durante este periodo, que según los ciclos puede durar al menos 2-3 años, el Sol se muestra más activo. Esto quiere decir que la cantidad y complejidad de fenómenos como manchas, protuberancias y fulguraciones se incrementan de forma considerable. Como consecuencia de todo esto, también el número y la intensidad de tormentas solares (también llamadas tormentas geomagnéticas) aumenta. Una de ellas ha sido la responsable de las grandes auroras vistas durante las últimas horas.

     De manera más concreta, el origen de esta gran tormenta solar, la más importante de las dos últimas décadas, ha sido una eyección de masa coronal (EMC) generada en el grupo de manchas NOAA 13664. Se trata de un gran grupo, que alcanzó la categoría más compleja, cuya visibilidad es posible solo durante la época de máximo solar. Ha llegado a ser tan grande (unas 17 veces nuestro planeta) que ha podido observarse incluso a simple vista (recordemos que siempre hay que hacerlo con el uso de filtros adecuados). Su configuración magnética ha sido muy compleja, con múltiples emersiones, y en un momento dado se ha producido una reconexión magnética de las líneas del campo que ha liberado la ingente cantidad de energía que ha llegado hasta nosotros desencadenado la gran tormenta solar. En este caso, este grupo, en apenas unas horas ha originado no una, sino seis EMCs que se pueden ver aquí.


Imagen del Sol tomada el día 11 por nuestro compañero Leo desde Burgos. En el recuadro se puede ver en detalle el gran grupo que ha originado las últimas auroras, con nuestro planeta, a escala, a su lado para resaltar sus dimensiones.


     Las EMCs son un hecho más o menos habitual en el Sol, sobretodo en épocas de máximo, y hay que tener en cuenta que pocas veces alcanzan la Tierra. Para ello tienen que venir en nuestra dirección y justo a nuestra altura, lo cual no es tan fácil como pudiéramos creer. Para entenderlo mejor tenemos que imaginarnos todo esto en 3D y no como hacemos tan a menudo, como si fuera un plano. El tiempo medio que tarda en llegar la energía de estas ECMs a nuestro planeta es típicamente de 24-48 h. Esto quiere decir que una vez detectada una hipotética tormenta potencialmente dañina capaz de impactar sobre nosotros (el Sol está monitoreado día y noche) disponemos de un cierto tiempo para proteger satélites e infraestructuras con el fin de evitar o minimizar posibles daños. Es algo obvio, pero viendo el ruido que generan terraplanistas y gente similar, especialmente en redes sociales, plagadas de expertos (léase con ironía), merece la pena aclarar que nos es tan probable que se den toda esta serie de requisitos, y mucho menos con una intensidad tal que suponga una amenaza para nuestra civilización.

      Cuando se producen estas tormentas tan intensas, la cantidad de partículas en el viento solar y su energía es tan alta que son capaces de atravesar buena parte de nuestro planeta hasta llegar a latitudes muy alejadas de los polos, cercanas incluso al Ecuador, y a partes bajas de la atmósfera. Esto hace que, de manera muy ocasional (una o dos veces por ciclo solar) se puedan ver auroras en nuestras latitudes, aunque no tan intensas como esta última. La tormenta solar fue tan energética, de hecho alcanzó el nivel máximo de la correspondiente escala, que llegó a producir auroras en sitios tan al sur como las Islas Canarias (28º de latitud) o ¡incluso Puerto Rico (18º)! En estos casos, nos llega la cola del viento solar, la parte final más débil, con lo cual son poco intensas y son muy difíciles de ver a simple vista, de hecho se suelen confundir con nubes. Tienden a ser rojizas (por la baja altitud) y solo se ven en la parte más cercana al horizonte norte, siendo bastante estáticas, nada que ver con el espectáculo dinámico y lleno de colores que podemos observar en las partes cercanas a los polos, donde llegan a extenderse por buena parte del cielo.


Imagen de la parte final, más difuminada, de la aurora del pasado día 10 desde Villanueva de Río Ubierna (Carlos).

 

    En los próximos días compartiremos la experiencia de uno de nuestros compañeros, que observó esta aurora desde Sicilia. Aprovechando también el tema de las auroras, tenemos pendiente también compartir los viajes que nuestros socios han hecho a tierras nórdicas para disfrutar en condiciones las auroras "de verdad". Mientras tanto seguiremos mirando hacia el cielo ...


 




domingo, 17 de marzo de 2024

... y así el Ramadán comenzó

    ¿Y qué tiene que ver esto con la astronomía? ¿Me he equivocado de sitio? Me imagino que estas, o muy parecidas, serán las preguntas que se estén haciendo las personas que en estos momentos nos estén leyendo. Pero tranquilos que ya veréis que algo tiene que ver con los temas que habitualmente tratamos en este blog, dejad que os lo explique.

    Antes de nada quería comentar que estoy escribiendo estas líneas desde Italia, donde la comunidad islámica y el instituto en el que trabajo (INAF, que recoge a nivel italiano la investigación en astrofísica, equivalente a nuestro CSIC pero sólo con astrónomos) firmaron un acuerdo de colaboración mediante el cual astrónomos del INAF se comprometían a dar una mano a dicha comunidad para establecer el inicio del Ramadán. ¿De qué manera? Muy sencillo: observando la luna.


 Telescopio apuntando a la luna nueva creciente

    Para los musulmanes, el Ramadán es el periodo del año más sagrado. En él se conmemora la revelación del Corán a Mahoma por parte del ángel Gabriel. El Ramadán es el noveno mes del calendario islámico, que se trata de un calendario lunar compuesto por 12 meses de aproximadamente 29,5 días (la duración de una lunación). Esto hace que un año islámico tenga 354-355 días, siendo por tanto 10-11 días más corto que un año civil (regido por el calendario gregoriano). Esto hace que el inicio del Ramadán se vaya adelantando cada año estos mismos 10-11 días. 

    El comienzo del mes tiene lugar en el momento que se observa el primer creciente de luna después de la luna nueva, y es ahí donde entramos nosotros. Según la tradición, no basta con recurrir a efemérides sino que este primer creciente de luna se debe observar visualmente para poder dar comienzo al nuevo mes. Así, al atardecer del pasado lunes día 11, desde distintos lugares del país llevamos a cabo una observación en directo de este primer creciente de luna para los principales imanes italianos que de esta manera pudieron dar oficialmente por iniciado su mes sagrado.

 

 Luna nueva creciente centrada en la parte visible (por eso es tan oscura a pesar de hacerse al atardecer)

 

    Como explicamos siempre en nuestras observaciones públicas, el cielo ha sido siempre, y de manera natural,  reloj y calendario  para todas las civilizaciones. Por poner un ejemplo más cercano, en nuestra cultura cristiana, la celebración de la fiesta más importante, el Domingo de Resurrección (Pascua), no tiene asignada una fecha fija sino que desde el concilio de Nicea (allá por el año 325) se celebra el domingo siguiente a la primera luna llena tras el equinoccio de primavera. Esto hace que, como ya sabemos, la Semana Santa no caiga siempre en la misma fecha, pudiendo celebrarse tanto en marzo como en abril. De hecho, históricamente el calendario litúrgico ha sido más importante que el civil, lo que ha llevado a impulsar reformas como la gregoriana para ajustar el calendario civil y corregir el desfase con el año solar (trópico). De esta manera en 1582 se perdieron 10 días y se pasó del jueves 4 de octubre (del antiguo calendario juliano) al viernes 15 de octubre (ya en el actual calendario gregoriano).


Disco lunar iluminado por la luz cenicienta durante la luna nueva creciente

 

    Desde el mero punto de vista astronómico debo decir que ha sido una experiencia bastante interesante, ya que nunca había intentado capturar la menor fase de luna posible. Nosotros no llegamos a verla de día porque, además de la dificultad de tener todavía el Sol en el cielo, tuvimos nubes sobre el horizonte. Por suerte, apenas se puso el Sol esa parte del cielo se despejó y pudimos ver la luna, apenas iluminada un 2%, y fotografiarla. A medida que se hacía de noche el contraste con el cielo era mayor, lo que hacía muy sencillo verla a simple vista.

    A nivel personal estoy contento por haber podido participar en esta actividad, doble ejemplo de colaboración y acercamiento entre culturas y ciencia y religión.







jueves, 4 de enero de 2024

Ocultación de Betelgeuse

    Comenzamos el año hablando de un fenómeno astronómico muy poco frecuente, que sucedió hace unas semanas (la noche del 11 al 12 de diciembre) y que difícilmente volverá a producirse en los próximos años: la ocultación de Betelgeuse por el asteroide (319) Leona.

    Las ocultaciones asteroidales, es decir, cuando se da la casualidad de que desde nuestra línea de visión, un asteroide pasa justo por delante de una estrella, son la mejor manera de estudiar las propiedades físicas del asteroide. Tenemos que tener en cuenta que estos cuerpos, generalmente TNOs, son objetos muy pequeños (como máximo de algún centenar de kilómetros) que se encuentran a una gran distancia (a partir de las 30-40 UA), por lo que son difíciles de observar directamente con precisión, incluso con grandes telescopios. 

 

Apuntando el telescopio hacia Betelgeuse (en rojo) momentos antes del comienzo de la ocultación. La familiar figura de Orión es fácilmente reconocible asomando por encima del olivo.

 

    Este tipo de ocultaciones no son fenómenos muy habituales y son difíciles de predecir con una cierta antelación, ya que se requiere un buen conocimiento de la astrometría de la estrella y sobretodo de la órbita del asteroide. Lo que vemos en estos casos no es el asteroide en sí, generalmente muchísimo más débil que la estrella, sino el efecto que su paso produce en la luz que nos llega de esta última. En el momento en que el asteroide empieza a transitar por delante de la estrella, tapa una pequeña fracción de ésta, haciendo que su luminosidad comience a disminuir. En general esta caída de luz no suele ser muy grande y la duración del fenómeno es muy breve, en el mejor de los casos, unos pocos segundos.

    Al igual que ocurre con un eclipse solar, la visibilidad de la ocultación queda restringida a una pequeña franja del planeta, allá donde se proyecta la sombra del asteroide. En el caso de la ocultación de Betelgeuse la mejor zona para observarla era Europa, donde el fenómeno se producía pasadas las 2 de la mañana, con la estrella bastante alta en el cielo. El grupo más importante de observadores se desplazó al sur de España (desde Sevilla a Alicante) aunque también hubo un grupo importante en el sur de Italia, del que formé parte.


 
En la parte superior se muestra la franja de visibilidad de la ocultación sobre Europa. La línea azul marca el centro del fenómeno donde se produce la máxima duración mientras que las líneas violetas marcan los límites de la ocultación, más allá de los cuales no es posible observar el fenómeno. En rojo la zona de Calabria, en Italia, desde donde observamos nosotros. En la parte inferior se muestra en detalle la distribución de los observadores italianos (en amarillo). Aquí sólo se muestra la línea de la centralidad (verde) con sus errores (morado).


    Como decíamos al principio, los protagonistas de nuestra ocultación son Betelgeuse y (319) Leona, un asteroide del cinturón principal con una forma elipsoidal cuyo diámetro se sitúa en torno a 60x80 km.  Por su parte, Betelgeuse es una de las estrellas más brillantes y conocidas del cielo, fácilmente reconocible en la constelación de Orión por su color rojizo de la que ya hablamos en anteriores entradas durante la pandemia. Seguramente será la próxima supernova que explote en nuestra galaxia, algo espectacular pero que, (casi) con toda probabilidad, no llegaremos a ver.

    Lo particular de esta ocultación, más allá de que se vea afectada una estrella tan brillante, es que se da la casualidad de que ambos cuerpos muestran un tamaño aparente en el cielo muy similar, lo que convierte a este fenómeno en un eclipse más que en una ocultación normal. Esto nos va a permitir no solo el estudio del asteroide sino también el de la estrella. Por un lado podremos obtener una astrometría de precisión para Betelgeuse, algo difícil de hacer con los telescopios habituales (por ejemplo Gaia) al tratarse de una estrella muy brillante que aparece saturada en estos cartografiados. Por otro lado mediante el estudio de la curva de luz en diferentes filtros podremos realizar una especie de "interferometría" para estudiar posibles detalles (grandes células convectivas) de la superficie de la estrella así como del material expulsado a su alrededor. Hay que tener en cuenta que, por ejemplo, el tamaño de Betelgeuse en el azul es mayor que en el rojo, luego la duración y profundidad del fenómeno será distinta según el filtro que utilicemos.


 
Campo de observación con el apo en primer plano y el mak en la parte de atrás.

    En este tipo de observaciones lo importante es cubrir bien toda la franja de visibilidad (de norte a sur) de manera que podamos caracterizar adecuadamente el fenómeno en su totalidad. Observaciones aisladas en este caso no son muy importantes. En la parte italiana nos juntamos una veintena de observadores que, coordinados maravillosamente por Alfonso Noschese y Massimo Corbisiero (de AstroCampania), nos situamos en la costa jónica distribuidos uniformemente en diferentes cuerdas (lugares) a lo largo de la franja. Para estudiar la cromaticidad del fenómeno, siempre que se pudo, en cada cuerda se observó con varios filtros. En nuestro caso usamos dos telescopios: un Maksutov-Cassegrain de 127 mm, con una cámara Moravian C4 y filtro R (Cousin) y un refractor apocromático de 115 mm con una ASI 290 MM y filtro B (Jonhson).

    En el mundo de las ocultaciones se requiere una gran resolución temporal y por ello la técnica utilizada es muy diferente a la que usamos habitualmente para hacer astrofotografía u otro tipo de observaciones. La ocultación se registra en vídeo con la mayor tasa de imagénes por segundo (fps). Posteriormente se descompone el vídeo en sus frames, en los que previamente, durante la grabación, se ha insertado el tiempo en el que fueron tomados con una precisión lo más cercana posible a la milésima de segundo. En cada imagen se analiza el brillo de la estrella (por una sencilla fotometría de apertura) y analizando su variación a lo largo del tiempo, obtenemos la curva de luz del fenómeno:

 

 
Curva de luz suavizada de la ocultación obtenida en filtro B con el refractor.
 
 
    Técnicamente lo más difícil era elegir un tiempo de exposición adecuado, de pocos milisegundos, para no saturar Betelgeuse, pero al mismo tiempo obtener un número suficiente de imágenes para medir con precisión la ocultación. La tarea no era trivial ya que Betelguese además de ser tan brillante titila mucho, por lo que tuvimos que hacer varias pruebas los días anteriores con telescopios pequeños y cámaras lo más rápidas posibles. 
 
    En reuniones preparativas se habló de que Betelgeuse podría "desaparecer" (literalmente) durante poco más de 10 segundos del cielo, ya que, en el caso más favorable, la caída de luz podría estar entre las 6-8 magnitudes. La realidad es que a simple vista no percibimos ninguna variación significativa, aunque hay que tener en cuenta que la ocultación se adelantó unos 40 segundos respecto a las previsiones y que minutos antes Orión estaba cubierto por nubes pasajeras ... aunque cuando ya esperábamos lo peor tuvimos suerte y se volvió a quedar despejado.
 
    La forma en V de la curva de luz (sin zona plana en el mínimo) ya nos está indicando que no se produjo un eclipse total como nos hubiera gustado, sino que se trató de uno parcial (o incluso anular). La duración se situó en torno a los 11 segundos y la profundidad de la ocultación fue algo más de una magnitud (resultado todavía preliminar a partir de nuestras observaciones), lejos de la idea que teníamos cuando nos decidimos a montar la expedición para observarla, aunque debo decir que estoy muy contento de haber participado en este proyecto.

    Dentro del marco de ciencia ciudadana, se creó el proyecto StarBlink para involucrar a la gente a observar la ocultación. En dicho proyecto se creó este simulador muy intuitivo para entender cómo cambia la curva de luz según varían los tamaños de Betelgeuse y Leona o la distancia del observador a la línea de la centralidad. En las próximas semanas, a partir del análisis de las distintas curvas de luz, teniendo en cuenta tanto los filtros utilizados como la posición de cada observador, se empezarán a publicar los primeros resultados científicos de la ocultación, que compartiremos con nuestros lectores en este mismo blog.

Desde AstroDemanda queremos desear a todos nuestros lectores un ¡muy feliz y próspero 2024!
 
     



martes, 21 de noviembre de 2023

Algo raro en el cielo

    A lo largo de nuestra vida son muchas las horas que los astrónomos nos pasamos observando y disfrutando de las maravillas que nos ofrece el cielo nocturno y es por eso que lo conocemos tan bien. Nos basta una rápida mirada para ubicarnos y localizar las principales constelaciones y los planetas y en seguida percibimos cuando algo no cuadra, lo cual es muy raro que suceda. Sin embargo, precisamente esto último es lo que ocurrió el sábado pasado, dejándonos bastante sorprendidos.  

    Acababa de atardecer y en nuestro Complejo algunos socios estaban ya terminando de preparar los equipos o directamente empezando con las primeras observaciones de la noche. De repente alguien gritó: ¡Mirad ahí! ¿Qué es eso? Lo primero que pensamos fue en una especie de nube rara, grande y brillante que cubría una parte importante del cielo, ¿una nube noctilucente? No parecía, y además se veían como restos de un cohete o algo similar que se me movía alrededor, como cayendo. La segunda opción fue la reentrada en la atmósfera de la Starship, aunque tampoco acaba de cuadrarnos porque había sido lanzada a las 14 de la tarde, por tanto, varias horas antes.

 

Así vimos desde Quintanarraya los restos del misil francés lanzado el pasado 18 de noviembre
 

    A los pocos minutos, tal y como empezó el fenómeno, desapareció, dejándonos con las dudas de lo que habíamos visto. La respuesta llegaría poco tiempo después por las redes sociales y por diversos medios digitales: se trató de los restos de un misil balístico de largo alcance lanzado por Francia en el marco de su programa nuclear (eso sí, no llevaba carga atómica). Al menos por lo que se refiere a la parte "astronómica" estamos más tranquilos al conocer el origen de este extraño fenómeno, nada nuevo bajo el Sol, nunca mejor dicho. Sin embargo, es la otra cara de la moneda, la militar y la actual situación geopolítica a nivel mundial la que me preocupa algo más ...



sábado, 19 de agosto de 2023

AstroDemanda colabora con la ESA en el estudio de los planetas extrasolares

    Aunque el título de esta entrada pueda parecer algo exagerado no deja de ser real. Los aficionados, con nuestros equipos y, sobretodo, nuestra disponibilidad, podemos aportar datos útiles con valor científico que ayuden a los astrofísicos.

    Desde AstroDemanda ya colaboramos anteriormente en proyectos Pro-Am para medir y estudiar la evolución de la oscuridad de nuestros cielos y la búsqueda y caracterización de nuevas estrellas dobles. En esta ocasión describimos nuestra participación en el proyecto ExoClock.

 Exoclock logo

    La Agencia Espacial Europea (ESA por sus siglas en inglés) ha aprobado la misión espacial Ariel (acrónimo de Atmospheric Remote-sensing Infrared Exoplanet Large-survey), que, si todo va bien, será lanzada en 2029. Se trata de un pequeño telescopio de 1 m de diámetro que estará situado en el punto L2 de Lagrange.  En sus 4 años de vida nominal Ariel pretende estudiar con gran detalle una muestra considerable de exoplanetas, un millar, lo que prácticamente representa uno de cada cinco planetas extrasolares conocidos. A partir de observaciones fotométricas (tránsitos) y espectroscópicas, tanto en el visible como en el infrarrojo, Ariel determinará la composición química de sus atmósferas y ayudará a entender, como nunca hasta ahora, procesos complejos como la formación y evolución de los sistemas planetarios o la interacción entre planeta(s) y estrella.

    El proyecto ExoClock nace para dar apoyo y preparar la misión Ariel antes de su entrada en funcionamiento. La idea es reunir el mayor número de observaciones de tránsitos de exoplanetas hasta el lanzamiento de Ariel de tal manera que nos ayuden a mejorar al máximo el conocimiento de los mismos. De esta forma se podrán calcular efemérides mucho más precisas, lo que ayudará considerablemente en la selección final de los objetos que observará Ariel. También será de gran importancia, una vez que la misión vea su primera luz, para optimizar el tiempo de observación y su posterior explotación científica.

    Cualquier aficionado con un telescopio y una cámara CCD (o CMOS) puede unirse al proyecto y empezar a realizar observaciones. Aunque telescopios mayores aportarán mejores curvas de luz, diámetros modestos a partir de 15 cm ya permiten la detección de los tránsitos más sencillos. El uso de filtros es aconsejable pero no indispensable. Dado que los planetas son mucho más fríos que sus estrellas, la diferencia de brillo entre ambos será algo menor a longitudes de ondas rojas e infrarrojas, por lo que sería mucho mejor observar en R o I que en B o V.

 

Tránsito realizado con un típico telescopio de aficionado (Celestron SC de 20 cm) y una cámara CMOS (Moravian C4 1600EC). La magnitud V de la estrella era de 11,7; la profundidad del tránsito,  10,7 mmag y su duración de 3,11 h.


    En la propia web del proyecto, una vez registrados, tenemos disponible toda la información necesaria para comenzar: material sobre exoplanetas, consejos para observar o directamente las efemérides con los tránsitos adecuados para nuestro telescopio cada noche. La reducción de los datos se puede llevar a cabo por cada observador como mejor prefiera pero, por cuestiones de homogeneidad, se anima a utilizar el programa (pipeline) desarrollado ex profeso para el proyecto. Se trata de un sistema prácticamente automático, escrito en python, que permite de una manera muy rápida y cómoda la calibración, reducción y análisis de las observaciones.

 

 

Tránsito realizado con un telescopio profesional de 91 cm con la misma cámara utilizada anteriormente. En esta ocasión la estrella era de V=11,9;  la profundidad del tránsito de 17,5 mmag y su duración de 2,19 h.


    Siempre y cuando tengamos el material adecuado, se trata de observaciones sencillas de realizar que nos llevarán buena parte de la noche. Hay que tener en cuenta que un tránsito típico puede durar entre 2-4 h y que también se debe observar al menos media hora antes y después del mismo, para poder pillar la parte plana de la curva de luz, fuera del eclipse. 

    A modo de ejemplo, para mostrar el resultado final de las observaciones, he incluido un par de tránsitos realizados con distinto equipo al comienzo del verano. No me queda más que animar a los potenciales observadores a participar en el proyecto.